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This data-driven study focuses on characterizing and predicting mobility of players

between gaming servers in two popular online games, Team Fortress 2 and Counter

Strike: Global Offensive. Understanding these patterns of mobility between gaming

servers is important for addressing challenges related to scaling popular online platforms,

such as server provisioning, traffic redirection in case of server failure, and game

promotion. In this study, we build predictive models for the growth and the pace of player

mobility between gaming servers. We show that the most influential factors in predicting

the pace and growth of migration are related to the number of in-game interactions.

Declared friendship relationships in the online social network, on the other hand, have no

effect on predicting mobility patterns.

Keywords: online games, mobility networks, online social network (OSN) activities, multiplayers online games,

mobility diffusion

1. INTRODUCTION

Online gaming is not only a multi-billion dollar industry (Anderton, 2017) entertaining a large
global population, but also a popular form of social interaction among millions of individuals.
As online gaming exercises different types of sociability, such as shared activity (Zhuang et al.,
2007; Merritt et al., 2013), tie and team formation (Alhazmi et al., 2017), trust formation (Depping
et al., 2016), and long-term associations (McEwan et al., 2012; Jia et al., 2015), it becomes a
rich source of temporal social interaction data that can be exploited for many computational
social science questions. Data from online gaming environments were used to measure otherwise
difficult to observe behaviors, such as cheating (Blackburn et al., 2014; Zuo et al., 2016),
toxicity (Kwak et al., 2015), gold mining (Ahmad et al., 2009), and measuring online social
capital (Molyneux et al., 2015).

Another human behavior that digital records from gaming environments can describe is
mobility. Understanding players’ mobility between gaming servers is important in multiple aspects,
such as server provisioning, traffic redirection in case of server failure, and game promotion. In
addition, themigratory patterns of players can be leveraged inmodeling information dissemination
or behavior adoption. For example, a player may introduce a new set of gimmicks, or may affect the
server culture via positive or toxic social behavior.

In real world, human mobility has been shown to be a socially embedded phenomenon (Bilecen
et al., 2018), which is affected by both socio-economic factors and the subjectivity of human
behaviors (Barbosa Filho et al., 2011). Two important factors have been observed to contribute
toward individual’s migration decision (Blumenstock and Tan, 2016). Firstly, the extent to which
a migrant is connected to communities at home and at the destination, and secondly, the strength
and the support of destination ties in providing access to resources available in the destination
environment (e.g., job information). The online gaming environment has different characteristics,
and it is unclear whether the same arguments apply to player mobility.
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This paper quantifies the importance of in-game interactions
for a player’s decision to migrate from one server to another
within the same game. Players move to different servers over time
due to various reasons, including technical performance (latency,
computation speed), server/game preferences, peer familiarity,
or personal endorsements. Previous studies showed that players
tend to join games repeatedly with a set of familiar players with
whom they shared past experience (Jia et al., 2015; Alhazmi
et al., 2017). In this study, we specifically focus on the social
interactions as a factor to characterize players’ mobility patterns.
We develop machine learning-based models to predict, first, the
popularity of players over time with respect to the number of
neighbors following their mobility patterns, and second, how
fast a player moves between servers relative to the others. We
present our results using data from two popular online games,
Team Fortress 2 (TF2) and Counter Strike: Global Offensive
(CSGO), that involve millions of players across a thousand
servers over 4 months.

The contributions of this paper are 3-fold: First, it empirically
characterizes mobility patterns of players across servers through
the temporal mobility networks mechanism built upon their
interactions. Second, it identifies the features relevant to the
prediction of players’ popularity, including early and late movers
in the temporal mobility networks. Finally, it shows empirically
that the growth and the pace of the mobility can be predicted.

2. DATASET

The gaming dataset used in this study was obtained from
two sources: GameMe and the Steam Community. GameMe is
a statistical reporting service that monitors real time playing
activities on a collection of games. It provides APIs to collect real-
time statistics of each player’s gaming activity over a thousand
gaming servers. The Steam Community is an online social
network built on the Steam platform. It also provides APIs to
extract players’ list of friends, owned games, and game statistics
for the most recent 48 h.

We focus on two highly popular games on the Steam platform,
CSGO and TF2. CSGO is a tactical combat first person shooter
video game where players compete as part of the terrorist or
the counter-terrorist team. TF2 is a team-based and objective-
oriented first-person shooter game, where players compete on
two different teams and can pick a role from different categories,
such as pyro, medic, scout, or soldier. The games have similar

FIGURE 1 | Distribution of players across games and servers in both CSGO and TF2.

features including a wide variety of weaponry, maps, in-game
voice chat, etc.

We collected data on friendship and temporal gaming
interactions in these games through a web crawler that uses the
APIs provided by Steam and GameMe. In CSGO, the duration
of the collected data range from February 16 to August 9, 2017
(175 days), whereas in TF2, it is from February 16 to April 7, 2017
(51 days). The final dataset recorded over 13 million observations
of 1.62 million players and 934 servers in CSGO. For TF2, the
dataset contains over two million observations of 231 thousands
players in 344 servers. BOT accounts and spectators (i.e., inactive
players) were removed from the final dataset.

A game server is an authoritative host of game matches.
Online multiplayer gaming environments, such as first-
person/third-person shooter games, and role-playing games,
provide a list of servers hosting active matches for players.
Players can select server(s) and game matches based on different
criteria, including server name, player count, match mode, and
network latency.

Servers in online gaming have variable lifespans. The lifespan
of a particular server is the duration of that server being active
excluding intermittent downtime. In CSGO, the average server
lifespan was 66 days (maximum 102 days) whereas in TF2, it was
39 days (maximum 51 days). Similarly, the average number of
matches in CSGO was 1, 245 (maximum 7, 146) in comparison
to 228 (maximum 3, 103) found in TF2. Figure 1 shows the
distributions of players in matches and servers for both CSGO
and TF2.

From this dataset we constructed two social networks for
each game: a friendship network based on declared relationships
in Steam Community, and an interaction network based on
the observed activities at gameme.com. The interaction network
temporally connects players in the same match. Thus, an edge in
the interaction network is undirected, weighted with the number
of observed interactions between the players, and labeled with
the list of timestamps when the players were observed in game.
Only the active players observed in GameMe are included in
the friendship network. Table 1 summarizes the characteristics of
interaction and friendship networks in both games.

3. TEMPORAL MOBILITY NETWORKS

In team-based online games, players often follow each other
across servers in order to have fun, or to improve their
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TABLE 1 | Data characteristics of the interaction and friendship networks.

Game Period Servers Network Players Edges Density NCC

CSGO 02/16–08/09/2017 934
Interaction 1,106,652 27,415,330 4.48e-05 4,481

Friendship 928,863 9,525,587 2.21e-05 2,068

TF2 02/16–04/07/2017 344
Interaction 224,922 6,920,096 2.74e-04 1,636

Friendship 154,038 832,944 7.02e-05 4,258

NCC, # connected components.

TABLE 2 | Basic statistics of mobility networks in each game.

Games
# Nodes per network # Networks per server

# Networks Min Mean Max # of servers Min Mean Max

CSGO 2,816 2 202 8,434 705 1 4 15

TF2 1,316 2 51 2,937 323 1 4 10

FIGURE 2 | (A) CCDF of temporal mobility networks sizes and (B) the average weighted in-degree distribution of mobility networks. Distribution of players’

neighborhood ratio (Pvi ) in (C,D).

skills and team performance. This study analyzes temporal
interaction patterns among players to understand whether co-
playing experience has impact on players’ movements.

To capture the pattern of players following other players
from one server to another, we model players’ move as directed
networks called temporal mobility networks built on top of the
underlying interaction network. Intuitively, players’ movements
across servers can be explained by social interactions, common
experiences related to the characteristics of the home server (e.g.,
over or under-populated, players’ skill, etc.), personal factors
(such as the player moving to a different geographical location),
and many others. We only capture in this study—due to the
inherent limitations of the dataset we collected—the possible
reasons due to shared experiences, thus captured by the in-
game interactions.

We define a temporal mobility network G = (V ,E) in which
nodes are players and a directed link from node u to v exists
if (i) v moved to server S at time tm; (ii) u moved to server
S at time tn > tm; and (iii) nodes u and v have preceding
interactions at time ti < tm. In this context, node u is considered
to adopt/follow node v in his movement to server S. We build a
temporal mobility network based on the player movements in a
given server. Therefore, for a given server, in the corresponding
mobility network’s context, “mover” and “adopter” will be used
interchangeably in the rest of the text. The network is acyclic and

only the earliest (first) move to a particular server by a pair of
players is considered. The edges are time stamped to allow the
study of temporal patterns.

Table 2 presents the main statistics on the mobility networks
for both games and servers in games. Servers in the mobility
networks are the destinations in the mobility process. Each server
will attract disconnected networks of players. The number of
disconnected groups (temporal mobility networks) per server for
the two games are similar: on average, four groups join each
server. The maximum number of mobility networks for two
games was 15 and 10, respectively. However, larger groups move
in CSGO (maximum is above 8,000 players) compared to TF2
(where maximum is under 3,000 players).

The distribution of networks’ sizes is highly skewed across
servers in both games. Figure 2A presents the complementary
cumulative distribution functions (CCDF) of the mobility
networks’ sizes, calculated by considering the total number
of nodes per network, and reveals heavy-tailed distributions.
Figure 2B shows the average weighted in-degree distribution of
players in the mobility networks.

In order to understand what might make players move to a
different server, we calculated the ratio Pvi for a player vi between
player’s neighbors who moved with respect to all his neighbors as
depicted in Easley and Kleinberg (2010).Weweigh the number of
neighbors by the number of interactions. Figures 2C,D represent
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sampled distributions over 1,000movers and non-movers in both
games. It appears that the players who do not move have a lower
ratio of players who moved in their neighborhoods.

4. PREDICTION TASKS

We have two prediction objectives: (i) identify the popular
players in the early stage of the mobility networks formation,
and (ii) distinguish early and late movers over the lifetime of the
mobility networks. The underlying objectives behind these two
classification tasks are complementary. First, the identification
of popular players helps us detect whether a particular mobility
network grows during our observational period. Second, the
classification of early/late movers measures the speed of growth.
We also examine the features that are most useful for the two
prediction tasks.

4.1. Methodology
For the first task, we select temporal mobility networks with
lifespans as long as our observation period. We extracted 178
such mobility networks in CSGO and 82 in TF2. We split
the network lifespans into four quartiles. We define a node’s
popularity growth by comparing its in-degree as observed in the
first quartile with its in-degree in the last quartile. We consider
a node as being popular if its growth is higher than the median
of the nodes’ growth in that particular mobility network. The
classification dataset is constructed by considering each node
(player) as a prospective candidate of being popular or non-
popular. Each datapoint is described by a set of features (listed in
Table 3) constructed from the structural properties of each node
in the mobility networks in the earlier stage. These features were

TABLE 3 | Features used in the pace (P) and growth (G) prediction tasks.

Features Description Task

Weight Weight of edge to the parent node P

In-degree Node in-degree G&P

In-degreeNF Node in-degree from non-friends. G

In-degreeF Node in-degree from friends. G

Out-degree Node out-degree G&P

Out-degreeNF Node out-degree toward non-friends G

Out-degreeF Node out-degree toward friends. G

Weighted In-degree Sum of the weighted in-degree. G

Adoption Rate Total #adopters per unit time for the node G

CCout CC of out-going edges P

CCin CC of in-coming edges G&P

CC-NFin CC of in-coming edges from non-friends G

CC-Fin CC of in-coming edges from friends G

Time Lag/Adoption Duration Interval between the first and last adoption G

In-degreeparent The in-degree of the node’s parent P

Out-degreeparent The out-degree of the node’s parent P

CC-parentout The parent’s CCout P

CC-parentin The parent’s CCin P

isFriend If node and its parent are friends P

CC, clustering co-efficient.

used as input to a supervised learning algorithm, Random Forest,
to predict the popular nodes in the later phase of the mobility
network. The ratio of the training and testing datasets was 3:1
(75% training data, 25% testing data out of 140 thousands and
14 thousands instances in CSGO and TF2, respectively). The two
datasets are nearly balanced: 57% in CSGO and 59% in TF2 are
nodes in the non-popular category.

For the second task, predicting the pace of growth, we classify
nodes in the mobility networks as early and late movers. We
extracted a set of temporal-paths from each mobility network
formed in this study using pathpy (Scholtes, 2017). A temporal
path consists of a sequence of edges in the network ordered
by the node migration time. In Figure 3 (left), we present the
distribution of temporal paths by their size. We notice CSGO
consists of relatively longer chains of migrations than TF2. (Note
that a node may end up joining multiple mobility networks at
different times). We discriminate nodes between early and late
considering their delay in movement compared to the median
delay of the path they belong to: from the list of nodes in each
temporal path, nodes having delays shorter than the median
value are considered early movers. Figure 3 (right) presents the
distribution of median delays from all temporal paths extracted
from the largestmobility network in each server of the two games.
Interestingly, the sequence of movements observed in TF2 occurs
at faster rate than in CSGO.

To predict the pace of gamers’ movement, we extracted
node-specific features described in Table 3. These features were
used as input to the classifier to predict early (class 0) and
late (class 1) adopters. We use a Long-Short Term Memory
network for the classification task that consists of two blocks
of memory-cells with two different layers of hidden units.
The first layer contains 32 and the second one contains 8
units. We used the Adam algorithm with 0.001 learning rate

FIGURE 3 | Distribution of path sizes vs. the number of paths and the

probability distribution of movement delay by considering temporal paths in

mobility networks.

TABLE 4 | Prediction results for the popularity in the mobility networks of both

games using Random Forest.

Game Accuracy Class Precision Recall F1-score

TF2 0.73
1 0.54 0.72 0.61

0 0.85 0.73 0.79

CSGO 0.75
1 0.62 0.76 0.68

0 0.85 0.75 0.80

Class 1 denotes popular nodes and class 0 otherwise.
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FIGURE 4 | (Left) Ranking of features importance in predicting the popularity. (Right) Features importance by Spearman’s rank correlation coefficient ρ between the

predicted outcome and the ground-truth in predicting the early/late movers.

TABLE 5 | Prediction results for the movement pace in the mobility networks of

both games.

Classifier Game Accuracy Class Precision Recall F1-score

LSTM

TF2 0.70
1 0.70 0.72 0.71

0 0.70 0.68 0.69

CSGO 0.72
1 0.70 0.77 0.73

0 0.73 0.76 0.70

RF

TF2 0.66
1 0.67 0.67 0.67

0 0.65 0.65 0.65

CSGO 0.69
1 0.67 0.76 0.71

0 0.71 0.62 0.66

Class 1 denotes late adopters and class 0 otherwise. LSTM denotes Long-Short Term

Memory and RF denotes Random Forest.

as optimizer. We split the temporal-paths set of the mobility
networks into two sets: the training set includes 60% of the
paths out of 1.7 millions and 155,281 paths in CSGO and TF2
consecutively, while the testing set contains the remaining 40%
of paths.

4.2. Results
For classifying the popular players from unpopular ones,
Table 4 shows that Random Forest achieved high recall but
low precision. Similarly, the prediction performance in CSGO
outperformed the performances in TF2. The underlying reasons
behind the better performance are the size of the classification
datasets and rich feature values without significant overlap
between positive and negatively labeled data points. The list of
features are ranked according to their importance, calculated
by the Random Forest classifier in CSGO, in Figure 4 (left).
It is noteworthy that similar results for TF2 are omitted due
to space constraints. The out-degree of a node was found
to be the most important feature in predicting the player’s
popularity. More surprisingly, the out-degree of a node toward
his neighbors absent in its neighborhood of the friendship
network were found to be most important features in both
games. It is evident that friendship has minimal impact in
predicting the number of players moving toward a new server
following others.

For classifying early adopters from late ones, Table 5 presents
prediction performances demonstrated by both the Random

Forest classifier and the LSTM-based neural network. As
intuitively expected, the performance demonstrated by the
LSTM has outnumbered the performance by the Random
Forest classifier. The underlying reason behind the performance
improvement by LSTM is its capability of learning the sequence
data and consecutive dependency between feature values to
successfully classify binary labels. Improved performance by
LSTM also proves that in this context, recurrent neural
networks can be a better classifier due to the temporal
nature of the mobility network paths. Due to the improved
performance by the LSTM over Random Forest classifier,
the feature importance of the pace prediction tasks for both
games were presented as the Spearman’s rank correlation
coefficient ρ between the predicted outcomes vs. the ground
truth of the test data, as shown in Figure 4 (right). It is
noteworthy to mention that similar correlation was observed
in TF2. The results demonstrate that the in-degree of a node’s
parent in the temporal path of the mobility network works
as the best performing feature. Alternatively, the weighted
interaction between the nodes and their parents with large
number of followers are the principal determinants in predicting
their pace of movement. On the contrary, the clustering
co-efficient of the nodes’ parents by considering their out-
degree neighbors were found to have negative Spearman
correlation in both games. Finally, the friendships between
nodes and their parents represent only a small proportion
of the instances in both games (2%). Thus, it is irrelevant
to measure the correlation of the features incorporating the
friendship networks.

5. SUMMARY

This study focused on modeling the temporal mobility patterns
of online gamers by tracing the chronological movement of
players between two servers. We developed two machine
learning-based prediction strategies to predict the growth
and pace (speed) in the mobility networks. Our main
finding is that a player’s mobility decision is affected by
the co-players with the maximum number of interactions
and not by the declared friends in the friendship network.
This study can further be extended to explore the impact
of community-level network structure over player’s mobility
across servers.
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